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Two-Dimensional Electron Fluid at High Temperature 

Claude  D e u t s c h  1 
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The two-dimensional and one-component plasma (OCP) model with r - i  inter- 
actions is investigated in the high-temperature limit, where the thermal wave- 
length gets larger than the classical distance of closest approach. Nonnegligible 
diffraction effects are rigorously taken care of (up to e 2) through a temperature- 
dependent effective interaction. Debye thermodynamics, analyzed in terms of a 
classical plasma parameter A, is shown to diverge as A In h, when h -~ 0. There is 
no classical limit. A result at variance with the corresponding one in three 
dimensions. 
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1. I N T R O D U C T I O N  

The stat is t ical  mechanics  of the two-d imens iona l  e lectron fluid is of a 
cons iderab le  prac t ica l  significance.  (l) Usual ly ,  it  is a p p r o a c h e d  through a 

one -componen t  p l a sma  (OCP) mode l  of point l ike  charges in terac t ing  via a 
th ree -d imens iona l  C o u l o m b  poten t ia l  r - t ,  in the presence of a rigid a n d  
cont inuous  neut ra l iz ing background .  

The  O C P  t h e r m o d y n a m i c s  is thus ana lyzed  in terms of a d imensionless  

p l a s m a  p a r a m e t e r  A = fle2/)tD, when ~D denotes  the usual  screening 
length, a n d / 3  = (k  8 T)  - i. 

The  weak ly  coup l ed  reg ime (A<< 1) has  been  e x a m i n e d  severa l  
t imes (2-4) within a m e a n  field ( D e b y e - H f i c k e l )  f ramework.  The  system is 
then taken as di lute  and  classical,  with k B T  < 1 Ry  = me4/2h  2, bind ing  
energy of a pa i r  of unl ike charges in two dimensions .  
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A salient feature of all these studies is a first order thermodynamics 
proportional to 

f xodr=lnl 
e2 -r- 

a phenomenon usually interpreted as a poor performance of the mean field 
approximation (MFA), which fails to account properly for the short-ranged 
correlations. In an attempt to restore finite values for these nonanalytic 
quantities, Fetter (z) proposed to replace the classical distance of closest 
approach/3e 2 by the thermal wavelength h/(2mk BT)I/2 ~-~ while keeping 
hv~0. 

However, such a ad hoc replacement appears difficult to legitimate in 
the usual temperature range of interest (T<< 1 Ry) for condensed matter 
physics.(2-4) 

This explains that we pay a special attention to the opposite high- 
temperature domain (X >t /3e 2, T/> 1 Ry) where the above proposal is 
obviously a plausible one. 

Technically speaking, we have to work out a new situation where 
particles are so dilute that we neglect the Pauli repulsion [(rr~r) -1/2 >>?~ ], 
while diffraction corrections are expected to delocalize the point charges 
through the uncertainty principle. 

A similar problem has already been investigated at length in three 
dimensions. (5) 

The corresponding adaptation of the OCP model consists essentially in 
encapsulating the h v ~ 0 diffraction effects in a suitably modified two-body 
Coulomb interaction. A step taken up in Section 2. 

Then, the potential energy is computed in Section 3. It allows a most 
economical derivation of the canonical thermodynamics, in Section 4. This 
way, we circumvent a tedious calculation of the Debye pair distribution, 
postponed to a latter work. 

The results are finally contrasted to the corresponding three- 
dimensional one. 

2. HIGH-TEMPERATURE QUANTUM OCP (DIFFRACTION) 

We extend the usual classical MFA (Debye) expansion in A, to a 
domain defined by the parameters 

e2/kBT<,NTt<~D, A <  1 

through a double expansion in A and a = ~ / ) t  D. 
We expect to locate the main diffraction modifications of the previous 

classical OCP' expansions ~2-4) in the short-distance domain 0 < r,.~<~.. The 
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A-expansion will be adapted in the easiest and most transparent way, if we 
succeed in modifying the bare Coulomb potential r-1 itself to include the 
diffraction effects. Schematically, we are searching for a temperature- 
dependent effective interaction potential decreasing in a Coulomb-like 
fashion at large distances and remaining finite for r ~< )~. This program may 
be easily implemented through a standard trick which consists in approxi- 
mating the two-body high-temperature quantum Slater sum by the classical 
Gibbs expression, with the ansatz 

exp( - ,SH o -/~H1) -~- exp( - flH l)exp( - flHo)G (1) 

where 

N t02 and Hi = ~, e 2 1 
H 0 = X  2m e _--7--- 

i = 1  l<i<j<N [ri rjl 

G is thus a measure of the noncommutativity of H 0 and H 1 in the small fl 
range. It is obtained as a solution to the Bloch-like equation 

O G/Off = exp(fiHo) [ H o - exp(flHl)Hoexp( - fi l l , )  ]exp( - flHo)G (2) 

Expanding the bracket with respect to fi, we get a series which terminates 
exactly after the second-order terms, i.e., 

OG _ exp(flH0) /3[H 1,Ho] + ~ [ H I , [ H I  Ho]]  exp(-flHo)G 
0fi 

(3) 
The equation is solved to order H 1 

d G = 1 +s fll--~l [exp(fllHo)Hlexp(-fi~Ho) ] (4) 

which allows the density operator P = exp[ f i ( F -  H)] to be given as 

P e-BF = e- f i l l  = e-BH~e-H~ + e-fill '  l~dfil fil dfl l 

• [ e ( r (5) 

where F is the canonical free energy and H = H o + H I . The above expres- 
sion is further simplified, with/3'  = fll - fi, by virtue of 

2~re 2 e-B'Ho = 1 ~ e~,Ho(2~r)-2fd2 k exp(ik.rij ) T (6) eP'H~176 2 i-/-j 

Together with 

eB'Hoexp(ik.rij)e-B'Ho=exp(ik.rij)exp(fi'~rk ) ( j8 'h2k2 ) 
me "P0 exp me (7) 
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The result is (2~re2/k is the two-dimensional transform of e2/r) 

e-/~H = e-Bt/,e-/~H0 + 1 ~,e-BH,(Bdfl , (d2k 
2(2~r) 2 i~j ao a 

(2~re 2 , d 
• T exp(ik.rq)fl dfl' 

• exp me exp me 

where p~j = p j -  Pi. The corresponding canonical partition function Z = 
Tre-I~H is explained as 

(rl . . . . .  rule-BHlr I . . . . .  rN) 

= ( 2me 

• { l +  2(;)  2 iv=~js ' f i 'd-~ f d2k T2~re2 exp(ik .r,j) 

h2k___~ 2 _ fl, + • exp rne - - ~  (9) 

Now, let us simplify the B'-quadrature with the new variable ~ = B'/B 
and - B '  + B'z/B = Ba(~ - 1) and approximate the high-order quantum 
corrections, by virtue of the exponential expansion, which read as 

(r, . . . .  , rNle-l~HIq . . . . .  ru)---- ~r ~ exp -- W(rij ) 

(lo) 
where W(r~j) is the temperature-dependent effective potential of interaction 
introduced as 

W(rg.)_ (2~r) 21 fd2kexp(ik.ro)~2~re 2 {s ) 

(11) 
the Fourier-transform of which is readily obtained as 

w(k) 2~e2 = ~ ,F,(1;~ ; - kZ)t 2/4) (12) 
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3. MEAN POTENTIAL ENERGY 

Avoiding a direct attack on the Debye pair distribution g(r), the 
corresponding thermodynamics is approach in the easiest way by (s) (n = 
number density) 

n2V (d2r e 2 
Up~ 2 J r [ g ( r ) - 1 ]  

n2V ( d 2 k  2~re2 [ - flw(k) 1 
---- 2 3(2,~) 2 --k--" lYpBw(k)  

= - N K . T A  .fo dK. IFI( 1;3 ;(--~'2/4XD)K2) 
2 K + ,F](1;- ~ ; ( - X  2/4X ~)K 2) 

with 2tz) = k B T/2rme 2. 

(13) 

In the present high dilution domain, the linearization of g(r)-  1 is 
mostly appropriate. Moreover, as in three dimensions a very accurate 
estimate of the resulting dimensionless quadrature is achieved by retaining 
only the first term in the expansion 

where 

,F,(1; 3 ; ( - X  2K2/4X~)) 

K + I  
�9 ( 1 - X + X 2 +  " ' ' ) ,  IxI 1 (14) 

,Fl(1; 3 ; ( -X2K2/4) t~ ) ) -  1 
X =  

K + I  

So, we get (a =A/~D) 

Up~ ~ NkB TA(  C "l- lna 1.1470) (15) 

where C = 0.577215. The derivation of Eq. (15) is detailed in the Appendix. 

4. THERMODYNAMICS 

The canonical thermodynamics is then straightforwardly deduced 
from the excess free energy, taken as a expectation value of the potential 
energy for coupling strength he 2, in the form (6) 

F exc= ( 1  d)~ Upot(?te 2) _ NkBT [lna - 1 .3484]  
j0-S-  

(16) 
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from which follow the other usual quantities 

E . . . .  3 flF~X~)_ NkBT Off ( -~ A ( l n a -  0.5984) (17) 

exc 3 E ~  _ kB A 
Cv - kBfl 2 - -  (lna + 0.9016) (18) 
N 0 3 2 

SeXC - fl 2 3FeXC - kBA (lna + 0.1516) (19) 
N 0,8 4 

3 e  . . . .  B f lV = - ~  (lna - 0.3484) (20) 

and the compressibility 

in a characteristic form 

3flPon 8 = A ( l n a  + 0.1516) (21) 

A(ln X~ + const) (22) 

which makes obvious the nonexistence of a classical limit (h ~ 0) at high 
temperature. 

This two-dimensional behavior may be given more perspective by 
revisiting the three-dimensional one, where ~5) 

I F I ( I ,  3 ; --  K2X 2/X~4) 

G o t  = - N k .  T A  f o ~ d ( K  ) (K)2q-IFI( l '3;-k2~t2/) t2D4) (23) 

and 

w(k)  4~reZ = ~ 1F1(1, 3 ; - k2XZ/ax~) (24) 

Expansion of the denominator of Eq. (23) then gives 

{ f p o t = - 1 N k B T A [ I - l ( ~ ) l / 2 / ) k o  q- � 9  ]} 
(25) 

N A ( 1  3~/~- X + . . . )  
F - F ~  3 16 X D 

in quantitative agreement with the exact h-correction already obtained (7) 
from an independent many-body formalism. Higher-order terms in h 2 
would certainly require at least the next exact e4-correction to w(k), in view 
of the fact that the higher-order contributions obtained from the h- 
expansion of Eq. (23) are systematically smaller than the few available 
exact results. (v/ 
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The corresponding h ~ 0 limit is therefore well-defined in three dimen- 
sions and at order A. 

Please note, again, that the singularity as h ~ 0 is derived under the 
condition 

>>. fie 2 

when/9 ---> 0. 
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A P P E N D I X  

We compute the quadrature 

s176 'FI( 1; ~ ; - K 2 ~  2/42t~) 
12 = K + 1 (A .1 )  

in the right-hand side of Eq. (13). Let us introduce the Hankel representa- 
tion 

1F 1 ( 3 . 1 ;  2 , ~2K2)4~. 2 = ~-'~2 (._~)l/2s t 

so that 

1' : 2~--~-~ " { 'zr3/2 A ~  2 4 ?~a s ~176176 } (A.2) 

where 

- Si:au~ = (o~ dt sin t u 
L t 

- Ci(au~ = ('~ dt cos t u 
& t 

is rewritten as (a = X/XD) 

Making use of 

: ,   A.4, 
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and (C = 0.577215) 

L~duulnulfl( 2 ; 5 " a  2 '  (4 4a )2  ) 

_-_- 3 L[23/2(C-31n2)+ ~ r ( l _ 2 1 n 2 ) ]  
4~- J 

one finally obtains 

[ qr (1 - 21n2)] + O(a) 1 23/2(C - 31n2) + ~- 11 ~ - In a - 4,/~- 

yielding back Eq. (15). 

(A.5) 

(A.6) 
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