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Two-Dimensional Electron Fluid at High Temperature
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The two-dimensional and one-component plasma (OCP) model with r ~! inter-

actions is investigated in the high-temperature limit, where the thermal wave-
length gets larger than the classical distance of closest approach. Nonnegligible
diffractjon effects are rigorously taken care of (up to e2) through a temperature-
dependent effective interaction. Debye thermodynamics, analyzed in terms of a
classical plasma parameter A, is shown to diverge as A In A, when 4 — 0. There is
no classical limit. A result at variance with the corresponding one in three
dimensions.

KEY WORDS: Two dimensions; Coulomb system; quantums corrections
at high temperature; classical limit.

1. INTRODUCTION

The statistical mechanics of the two-dimensional electron fluid is of a
considerable practical significance.("” Usually, it is approached through a
one-component plasma (OCP) model of pointlike charges interacting via a
three-dimensional Coulomb potential r ™!, in the presence of a rigid and
continuous neutralizing background.

The OCP thermodynamics is thus analyzed in terms of a dimensionless
plasma parameter A = fe?/A,, when A, denotes the usual screening
length, and 8 = (k,T)~ .

The weakly coupled regime (A< 1) has been examined several
times®®® within a mean field (Debye—Hiickel) framework. The system is
then taken as dilute and classical, with k;7 < 1 Ry = me*/2#?, binding
energy of a pair of unlike charges in two dimensions.
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A salient feature of all these studies is a first order thermodynamics
proportional to

Ap dr _ 1
=g
a phenomenon usually interpreted as a poor performance of the mean field
approximation (MFA), which fails to account properly for the short-ranged
correlations. In an attempt to restore finite values for these nonanalytic
quantities, Fetter® proposed to replace the classical distance of closest
approach Be” by the thermal wavelength % /(2mk,T)"/? =A while keeping
k0.

However, such a ad hoc replacement appears difficult to legitimate in
the usual temperature range of interest (7'« 1 Ry) for condensed matter
physics.(29

This explains that we pay a special attention to the opposite high-
temperature domain (X > Be’, T > 1 Ry) where the above proposal is
obviously a plausible one.

Technically speaking, we have to work out a new situation where
particles are so dilute that we neglect the Pauli repulsion [(w7)™'/2>X],
while diffraction corrections are expected to delocalize the point charges
through the uncertainty principle.

A similar problem has already been investigated at length in three
dimensions.>

The corresponding adaptation of the OCP model consists essentially in
encapsulating the A # 0 diffraction effects in a suitably modified two-body
Coulomb interaction. A step taken up in Section 2.

Then, the potential energy is computed in Section 3. It allows a most
economical derivation of the canonical thermodynamics, in Section 4. This
way, we circumvent a tedious calculation of the Debye pair distribution,
postponed to a latter work.

The results are finally contrasted to the corresponding three-
dimensional one.

2. HIGH-TEMPERATURE QUANTUM OCP (DIFFRACTION)

We extend the usual classical MFA (Debye) expansion in A, to a
domain defined by the parameters

e2/kyT<A<A,, A<I1

through a double expansion in A and a =X /A,,.
We expect to locate the main diffraction modifications of the previous
classical OCP’ expansions>® in the short-distance domain 0 < r SX. The
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A-expansion will be adapted in the easiest and most transparent way, if we
succeed in modifying the bare Coulomb potential ' itself to include the
diffraction effects. Schematically, we are searching for a temperature-
dependent effective interaction potential decreasing in a Coulomb-like
fashion at large distances and remaining finite for » <A . This program may
be easily implemented through a standard trick which consists in approxi-
mating the two-body high-temperature quantum Slater sum by the classical
Gibbs expression, with the ansatz

exp(— BH, — BH ) = exp(— BH )exp(— BH,)G (1)
where
X Pl 1
H,= ' and H,= e’
0 ,~§1 2m, : l<i§j<N |r; — '}I

G is thus a measure of the noncommutativity of H, and H, in the small 8
range. It is obtained as a solution to the Bloch-like equation

3G /3B = exp( BHo)[ H, — exp( BH ) Hoexp(— BH ) |exp(— BH)G  (2)

Expanding the bracket with respect to 8, we get a series which terminates
exactly after the second-order terms, i.e.,

2
% —exp(,BHO){ BLH\, Hy) + Do, [ 8, ,HO]]}exp(—,BHO)G
)
The equation is solved to order H,
8 d
G=1+ fo a6, Bz [exp( B,Ho)H exp(~ B1H)] (4
which allows the density operator p = exp[ 8(F — H)] to be given as
e BF = o=BH o g=BHio~Ho 4 ,—8H, (Byp p d_
p L Bl )81 dﬁl
X [e( Bl_B)HoH‘e“(ﬁl_B)Ho]e“ﬁHo (5)

where F is the canonical free energy and H = H, + H,. The above expres-
sion is further simplified, with 8’ = 8, — 8, by virtue of

‘Hy —B'Hy 1 ‘Hy - j 2 > B 0
el o e~ FHo = 5 lgjeﬁ Ho(2mr) 2J‘dzkexp(zk ‘ry) 7]7: e Pt (6)
Together with

, ) o ] /’77 /thZ
e Moexp(ik - 1,)e ’“”°=exp(tk-ry.)exp(—%e—k-py)exp( Bme ) (7
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The result is (27e?/k is the two-dimensional transform of e2/r)

e PH = g=BHig=BHo 4 1 X ,-BH, Bd,B d’k
. 2(277)2 lzj \[ f

277@2 . ’ d
X [ ——k——exp(lk-r[j)ﬁ 5

exp(* ﬁnl_;lj.)exp(— ﬂ:&z_k_z)}e-ﬁfio} (8)

X

e e

where p; = p, — p;. The corresponding canonical partition function Z =
Tre PH is explained as

ryy ooy ryle™ e, oo
2m, y B
() ool 5 25)
1 Bin:i nr d n 27e? .
X1+ —— —_ k 4= . r..
{ o 2y BB G [ ey

hjf(—ﬁ'+—/;—2)” ©)

Now, let us simplify the 8'-quadrature with the new variable a = 8’/
and — B’ + B?/B = Ba(a — 1) and approx1mate the high-order quantum
corrections, by virtue of the exponential expansion, which read as

{ryseesryle™ e oo ry) = w( 2m, ) Nexp{_ B > W(r..)}
1 » I'n 19+ /N ,Bh2 2 oy q
(10)

where W(r;) is the temperature-dependent effective potential of interaction
introduced as

X exp

W(r,-j =

*kexp(ik - 1) 27;:2 {L‘da exp| — Bk’ (1 ~ a)/m, ]}

(11)

the Fourier-transform of which is readily obtained as

w(k) = 27’e Fy(13

—k?x*/4) (12)

’27
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3. MEAN POTENTIAL ENERGY

Avoiding a direct attack on the Debye pair distribution g(r), the
corresponding thermodynamics is approach in the easiest way by (n =
number density)

2 2
Upa= 23 [0 € [0~ 1]

;n_zV_ d’k  2me’
2 (277)2 k

— Bw(k)
1 + pBw(k)

Fi(1:35 (=224 5)K7)
K+ F(133 5 (-X/45)K7)

— Nk, TA 0
= _ BT f dK (13)
0

2

with A, = k, T /27ne’.

In the present high dilution domain, the linearization of g(r)—1 is
mostly appropriate. Moreover, as in three dimensions a very accurate
estimate of the resulting dimensionless quadrature is achieved by retaining
only the first term in the expansion

Fi(L3 5 (K2 /403))
K+1

=X+ X>+ ), X<l (14
where

lFl(l;% ;(—K2K2/4?\12,)) -1

K+1
So, we get (a =X /Ap)
Nk T /¢
Upot =— A(7 +1Ina— 1.1470) (15)

where C = 0.577215. The derivation of Eq. (15) is detailed in the Appendix.

4. THERMODYNAMICS

The canonical thermodynamics is then straightforwardly deduced
from the excess free energy, taken as a expectation value of the potential
energy for coupling strength Ae?, in the form(®

Nk,T
4

€XC 1 dA —_
Foe = fo ER Upoy(Ae?) = [Ina — 1.3484] (16)
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from which follow the other usual quantities

€xXc a €xXC NkB T
£ = @(BF )= 3 A(lna — 0.5984) (17
e QB __ kgh
~ = ks’ Y —5— (Ina +0.9016) (18)
Sexc aFexc kBA
~ =B’ B4 (Ina + 0.1516) (19)
exc _ __ BIBF _ An _
and the compressibility
IBP| _ A
e B= ?(lna+0.1516) 23]
in a characteristic form
A(ln A const) (22)
Ap
which makes obvious the nonexistence of a classical limit (#—0) at high

temperature.
This two-dimensional behavior may be given more perspective by
revisiting the three-dimensional one, where(®

Fi(L35 — K2 /A34)

A o
U.,=—Nk;T= | d(K 23
pot ? Wfo ( )(K)2+1F1(1,%;—k2?£2/}\12,4) (>3
and
4 2

w(k) = _Zf_ (L35 =K% /405) (24)

Expansion of the denominator of Eq. (23) then gives
{Upr= = 4NkgTA[1 = 4(0)' 2 /Ny + - ]} o)

g _NA({_ 3" x .
F—Fy= 3(1 TR )

in quantitative agreement with the exact #-correction already obtained(”
from an independent many-body formalism. Higher-order terms in #
would certainly require at least the next exact e*-correction to w(k), in view
of the fact that the higher-order contributions obtained from the A-
expansion of Eq. (23) are systematically smaller than the few available
exact results.(”
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The corresponding /% — 0 limit is therefore well-defined in three dimen-
sions and at order A.

Please note, again, that the singularity as 2#—0 is derived under the
condition

A > Be?
when 8—0.
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APPENDIX

We compute the quadrature

o 1Fi(133; —K?X2/4M3)
I :fo dK oS (A1)

in the right-hand side of Eq. (13). Let us introduce the Hankel representa-
tion

252 A2 1/2 y s
1F1(1 3._XK )=__13(2?77) foooJI/Z(Kt)e_)\D/xtl/zdt

' Y X2
so that
203 1, 32 w o
h= }‘22 ' i ol %D —fo dte~ /M Cir)sin ¢ — Si(t)cost]} (A2)
where
—Si(au)=Looit_S%’ ,Ci(au)=fa°° dl‘C(t)Stu

is rewritten as (a2 =A /Ap)

" _ 2
,1=2_*2[f/__f°°45(,_a)lpl(1;%;—” ) e

Making use of

o0 (r— a)2 3/2
fa dtlFl(l;% - )= s (A.4)
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and (C = 0.577215)

4 — ay
fma’uulnulFl(2;é ;— (———)—)
a

2 4

- 3 3/2 il
= - — 229(C~3In2)+ 2 (1-2In2 A5
FPCsmy e Ta-amy] (As)

one finally obtains
- 1 3/2 a

I=~Ina— —— |24(C-=3n2)+ (1 -2In2) |+ O A6
(= —lna— S [2%(C =32 + Z(1-2In2) |+ O(a) (AS)

yielding back Eq. (15).
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